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Abstract

This paper is concerned with the simulation of the flow in a flat, ‘two-dimensional’ laboratory centrifugal pump. The

main concern of the study is the calculation of the flow-induced noise. The aim of the present paper is to develop a

computationally simple and fast method which is capable of giving a useful estimate of the noise-generating

‘background-flow’. A companion paper describes the hydroacoustic part of the analysis. In the numerical flow model of

the pump, the inlet is modelled by a point source and the blades of the impeller are covered with vortex elements with

discrete, bound vortices. The casing is covered with source panels. Vortices are shed from the trailing edges of the

impeller blades and convected with the streaming fluid in order to satisfy Kelvin’s theorem. After computation of the

velocity field, the fluid forces acting on the impeller blades are calculated by application of the unsteady Bernoulli

equation. Some case studies of pump flows are presented. The acoustic properties of these flows is the subject of the

second part of the paper.

r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Noise generation within centrifugal pumps is receiving increasing research attention in recent years. This is due to

increasingly strict environmental noise level restrictions, and also due to customer demands. In the past, the attention

and research funding of ‘machine acoustics’ was mainly focused on high-speed noise, with application to aircraft and

heavy-duty turbomachinery (Cumpsty, 1977). A few investigations have been concerned with analysis and minimization

of the noise generation by low-speed fans and blowers (Neise, 1976; Jeon and Lee, 1999, 2000). As to centrifugal pumps,

noise due to cavitation has received a good deal of attention through more than half a century (Stepanoff, 1957;

Brennen, 1994). Research on noise generation not related to cavitation has been reviewed by Guelich and

Bolleter (1992) and by Rzentkowski (1996). In recent years much work has been done on developing ‘global’

models, which are able to characterize the hydrodynamic sources from measured data (Mongeau et al., 1995;

Morgenroth and Weaver, 1996; Rzentkowski and Zbroja, 2000). But it appears from the reviews that very little work

has been done so far on mathematical models that include the influence of volute (casing) geometry on the acoustic

pressure pulsations.

The present (two-part) paper attempts to follow a recommendation of Rzentkowski (1996) by suggesting a numerical

procedure which ties the pump geometry with the noise sources. The present Part I of the paper will, as the title

ARTICLE IN PRESS

*Corresponding author. Present address: Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata

University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan. Tel.: +81-238-26-3326; fax: +81-238-26-3205.

E-mail address: mikael@yz.yamagata-u.ac.jp (M.A. Langthjem).

0889-9746/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jfluidstructs.2004.01.003



indicates, be concerned with the hydrodynamic part of the analysis. Part II (Langthjem and Olhoff, 2004) will be

concerned with the hydroacoustic part.

As a ‘first step’ the analysis is restricted to a two-dimensional (2-D) formulation. A nearly 2-D flow field can be

obtained in ‘flat’ laboratory pumps. In most commercial pumps, three-dimensional (3-D) effects cannot be neglected.

But a 2-D analysis is much less computational demanding than a 3-D analysis and still, much essential understanding of

the noise generation can be obtained.

The paper follows the ‘acoustic analogy’ point-of-view (Lighthill, 1952) where the analysis is separated into two steps.

The first step is concerned with a hydrodynamic (incompressible) analysis, in order to obtain the ‘background flow’ and

the noise-generating fluid forces. The second step is a hydroacoustic (compressible) analysis, which considers the

solution of an inhomogeneous wave equation where the from ‘step one’ obtained fluid forces enter in the forcing

function which drives the sound waves. This approach is valid when the acoustic back-reaction on the hydrodynamic

field can be neglected. This is typically so when (i) the characteristic Mach number M51; (ii) compressibility is
unimportant in determining the flow; (iii) the fluid motion is not coupled to a resonating system (Howe, 1997). For the
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Nomenclature

Roman symbols

a chord (in airfoil example)

c0 speed of sound

Cj cut-off function, defined by (4)

ln length of impeller blade panel n

L lift

M Mach number

n normal vector

Ny number of y

p fluid pressure

r distance between source point y and observation point x

rT impeller inner radius

RT impeller outer radius

s curvilinear coordinate

t time

tblade blade passage time, 2p=ONblades

t tangential vector

UT rotor peripheral velocity, RTO
x observation point

y source point

Greek symbols

a inclination angle (in airfoil example)

G vortex/source strength

e cut-off radius in the function defined by (4)

n kinematic viscosity

r0 fluid density

O angular velocity

Subscripts

bi bisector

bv bound vortex

l lower

ps point source

sp source panel

sv shed vortex

t tangent

u upper

v vortex
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present centrifugal pump problem the appropriate Mach number is

M ¼
Impeller peripheral velocity

Speed of sound
; ð1Þ

and this is much less than unity for typical pumps. Pump systems also normally satisfy conditions (ii) and (iii).

The relation between unsteady flow, pressure fluctuations, and noise in centrifugal pumps has been studied

experimentally by Chu et al. (1995) and by Dong et al. (1997). These papers give an excellent guideline to what is

important to include in a mathematical model of the flow-induced noise. In Chu et al. (1995), the pressure inside the

volute is calculated directly from the Reynolds equation by using phase-averaged velocities obtained from particle

displacement velocimetry. Viscous stresses are ignored due to a high value of Reynolds number. The experiments are

carried out using a pump with a ‘2-D’ volute, and 2-D calculations compare well with measured pressure data. It is

found that turbulence can be ignored, but vorticity gives a major contribution to the total pressure variation. A pure

potential flow model (without shedding of vorticity) thus cannot provide an acceptable description of the flow. Another

major conclusion is that the fluid–structure interaction between the rotating blades and the volute tongue may be the

primary source of noise generation. This aspect was studied further by Dong et al. (1997). It was found by experiment

that the noise level can be significantly reduced by increasing the gap between the tongue and the impeller up to about

20% of the impeller radius. [A standard pump has typically a gap of 5–10%.] But increasing the gap may decrease the

pump hydraulic efficiency which is highly undesirable.

The interaction between the fluid, the rotating blades, and the volute tongue, and also the interaction between the

flow and the rotating impeller alone, causes pressure fluctuations on the internal surfaces (stationary and moving) which

acoustically correspond to dipole sources. Noise sources corresponding to monopole and quadrupole sources also exist

in the pump, but it will be argued in Section 1 of Part II that these typically are insignificant in comparison to the dipole

sources. It is thus assumed in this work that the noise generation within the pump is due to dipole sources alone. The

reader is again referred to Part II for a discussion of this and other acoustics aspects.

There are many examples in the aeroacoustics literature where simple flow field estimates as input to an acoustic

analogy-type of equation produce good estimates of both near- and far-field noise levels [see Howe (1998) for an

extensive review; other interesting examples include Sugimoto and Ogawa (1998) and Jeon and Lee (1999)]. Encouraged

by these examples, the idea starting the work to be presented here was to develop, within a 2-D framework, (i) a simple

numerical method to compute a useful estimate of the oscillating fluid forces acting on the internal surfaces in a

centrifugal pump and (ii) a method to compute the acoustic pressure fluctuations generated by these forces.

Considering task (i), it appears that the discrete vortex method, combined with the panel method for the solid surfaces,

include those ‘background flow’ effects pointed out by Chu et al. (1995) as being important, and exclude those which

are not. The discrete vortex method was introduced by Rosenhead (1931) in a study of vortex roll-up in the Kelvin–

Helmholtz instability [see e.g., Drazin and Reid, 1981]. Recent reviews of vortex methods have been given by Graham

(1986), Sarpkaya (1988) and Cottet and Koumoutsakos (2000), while panel methods are reviewed by Katz and Plotkin

(2001). The discrete vortex method is an instationary, Lagrangian, grid-free method, useful to simulate flows with

rotating mechanical components, as in a centrifugal pump. It was originally formulated for basically inviscid, high

Reynolds number flows, with viscous effects entering only through the Kutta condition, to model the shedding of

vorticity from surfaces into wakes. Once released, the vortices thus keep their initial strength throughout the simulation.

In reality the vortex structures eventually die out due to viscous dissipation. To model this in a simple way, Kuwahara

and Takami (1973) introduced ‘artificial’ viscosity, based on the exact solution of the equations of motion for a single

vortex in an unbounded viscous fluid. Later, methods that deal rigorously with viscosity were developed [see Cottet and

Koumoutsakos, 2000].

The ‘inviscid’ discrete vortex method with ‘artificial’ viscosity is chosen here, mainly due to its simplicity. But as the

present work assumes a high Reynolds number flow, as is typical for many centrifugal pumps, the simple treatment of

viscosity is believed to acceptable. The blades of the impeller are covered with vortex elements with discrete, bound

vortices. The casing is covered with source panels (with continuous distributions of sources). During the simulation,

discrete vortices are shed from the trailing edges of the impeller blades and the volute tongue. These vortices are

convected with the streaming fluid, to form wakes.

Once the velocity field is known, the unsteady fluid forces acting on the impeller blades can be calculated by

application of the (unsteady) Bernoulli equation. The fluid forces acting on the pump casing are evaluated in connection

with the acoustic analysis, by making use of the boundary element method (see Part II).

The present paper is organized as follows. The mathematical flow model is described in Section 2. Section 2.1

describes the discrete vortex method and Section 2.2 the evaluation of the fluctuating blade forces. Section 3 describes

verifications of individual components of the numerical scheme by comparisons with relatively simple problems
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described in the literature. Section 4 is concerned with a numerical simulation of a pump described in Chu et al. (1995).

Finally, some concluding remarks are made in Section 5.

2. Description of the mathematical flow model

2.1. The velocity field

A ‘2-D’ laboratory pump will be considered, with a geometry as sketched in Fig. 1(a). The mathematical model is

sketched in Fig. 1(b). [A very rough model is shown here, to emphasize the nature of the discretization. The actual

computational model is shown in Fig. 5.]

The inlet is represented by a point source. This gives a ‘perfect’ inflow which is not found in an actual pump.

Fluctuating inflow works acoustically as a monopole, which is the most efficient source type. Angular velocity

variations may amplify a nonuniform outflow from the impeller, which also acts acoustically as a monopole. This could

be modelled by placing several point sources of different strengths close to each other. Swirl could be modelled by point

vortices. Such effects are however difficult to quantify, and the present study will only consider the perfect inflow from a

single point source. Let x ¼ ðx1; x2Þ and y ¼ ðy1; y2Þ be points in the coordinate system X ¼ ðX1;X2Þ; where x refers to
an observation point, and y to the location of a singularity (sink, source, or vortex). If the source is located at yps; the
induced velocity at the position x is given by

upsðxÞ ¼
Gps

2p

x� yps

jx� ypsj
2
; ð2Þ

where Gps is the source strength.

The impeller blades are assumed to be very thin, such that they can be modelled as vortex sheets (or velocity

discontinuities). These sheets are represented by vortex panels having discrete, bound vortices. In these ‘lumped vortex’

panels the vortices are placed at the panel quarter chord points, and control (or ‘collocation’) points are placed at the

panel three-quarter chord points; see Fig. 2. These elements implicitly satisfy the Kutta condition at the trailing edge

(Katz and Plotkin, 2001, p. 223). It is known that the flow often separates on the suction side before (upstream from)

the trailing edge (Brennen, 1994, p. 41). This effect is ignored in the present model. Katz and Plotkin (2001, pp. 513–

514) describe how separation from unknown locations may be included in the discrete vortex method. The method

involves separation of many vortices from each blade at each time step, and thus becomes very computationally

demanding in comparison with the present approach.

As already mentioned, vortices are shed from the trailing edges of the impeller blades and convected with the

streaming fluid in order satisfy Kelvin’s theorem (see the discussion to Eq. (9), below). The vortices used are so-called

mollified versions (Cottet and Koumoutsakos, 2000) where the singularity at the vortex center is removed by

multiplication with a smoothing ‘cut-off function’. This is in order to avoid divergence of the numerical solution when

two vortices get very close to each other. The induced velocity at x from a number of discrete vortices of strengths ðGvÞj
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Fig. 1. (a) Schematic of a volute-type centrifugal pump; (b) Computational model (shown for a very rough discretization to emphasize

the straight source panels).
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located at yj ; j ¼ 1; 2;y;Nv; is given by

uvðxÞ ¼
XNv

j¼1

ðGvÞj
2p

ð�x2 þ y2j ; x1 � y1jÞ

jx� yj j
2

Cj ; ð3Þ

where Cj is the cut-off function given by

Cj ¼ ½1� expð�r2j =2e
2Þ�½1þ 2 expð�r2j =2e

2Þ�; rj ¼ jx� yj j ð4Þ

and e is the cut-off radius. Outside this (i.e. for r > e) the velocity field is basically unaffected. With the induced velocity
defined as in (3), a (single) vortex with a positive value of Gv will induce a counter-clockwise rotating flow.

The volute (pump casing) is covered by source panels, with uniform source strength over each panel. The induced

velocity at x from Nsp source panels of constant strengths per unit length ðGspÞj is written as

uspðxÞ ¼
XNsp

j¼1

ðGspÞj
2p

sj : ð5Þ

The influence coefficient vector sj is derived in Appendix A. The volute is specified by Ncon control points pi ¼ fp1i; p2ig
which are interpolated by a B-spline curve, see e.g. B .ohm et al. (1984). This kind of curve is defined by an expression on

the form

rðxÞ ¼ ðr1ðxÞ; r2ðxÞÞ ¼
XNcon�1

i¼0

piBiðxÞ; ð6Þ

where x is a parameter and BiðxÞ are the B-spline basic functions. This parameterization of the volute curve has the
advantage that, for equidistant values of the parameter x; the ‘nodal points’ rðxÞ are concentrated at sections with large
gradients. Thus, by connecting the volute source panels to these nodal points, sections with large gradients will

‘automatically’ be covered by many small panels, while relatively straight sections will be covered with fewer, larger

panels.

The total induced velocity at x is given by

uðxÞ ¼ upsðxÞ þ uspðxÞ þ ubvðxÞ þ usvðxÞ; ð7Þ

where index bv denotes bound vortices and index sv shed vortices. The boundary conditions are given by

uðxkÞ � nk ¼
Ork � nk on impeller blade panel number k;

0 on the pump casing;

(
k ¼ 1; 2;y;Ncp; ð8Þ

where Ncp is the total number of control points, rk is the radius-vector to impeller blade control point k; nk is the normal

vector, and O is the angular velocity. The strength Gnew of the new vortex to be shed from the trailing edge of impeller
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Fig. 2. Upper part: sketch of a single impeller blade covered with lumped vortex elements; Lower part: close-up of a lumped vortex

element. The discrete, bound vortex is placed at the panel quarter chord point x ¼ c=4; the control point is at the panel three-quarter
chord point x ¼ 3c=4:
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blade j is calculated by using Kelvin’s theorem, which says that: ‘‘The circulation around a closed curve moving with the

fluid remains constant’’ (Lighthill, 1986). As the circulation is zero at start-up of the pump, the sum of all vortex

strengths must remain zero at any time, giving

XNbv

m¼1

ðGvÞmj þ
XNshed

n¼1

ðGsvÞnj þ ðGnewÞj

" #
j

¼ 0; j ¼ 1;y;Nblades; ð9Þ

where Nshed is the number of vortices shed from blade number j: The vortices are released at a small distance E from the

edges, at positions Etedgej ; where tedgej is the tangent vector.

Vortices are also shed from the tip of the volute tongue. The strengths of these vortices are determined by imposing

the Kutta condition at the tip, although this is a leading edge, rather than a trailing edge. [See Crighton (1981, 1985) for

critical reviews of the concept of applying the Kutta condition to unsteady leading edge flows.] Mathematically the

condition is expressed as

uðxtipÞ � nbi ¼ 0; ð10Þ

where xtip is the tip point and nbi is the normal to the bisector of the tongue’s edge angle. Some blunt (rounded) volute

tongues will also be considered in Part II, in addition to sharp ones. Although the stagnation point for such tongues are

not fixed [see Dong et al., 1997] it will, for simplicity, be assumed fixed at the point of maximum curvature.

Eqs. (8)–(10) constitute together N ¼ ðNbv þ 1ÞNblades þ Nsp þ 1 linear equations with N unknown vortex strengths

C ¼ ðG1;G2;y;GN Þ
T: After each time increment Dt the impeller coordinates and positions of shed vortices are updated

and the equation system is resolved. Once the vector C is determined, the flow velocity can be evaluated at any point.
The position of each of the shed vortices is updated according to the second-order scheme (Kiya et al., 1982)

xsvðt þ DtÞ ¼ xsvðtÞ þ 1
2
3uðxsvÞt � uðxsvÞt�Dt

� �
Dt: ð11Þ

Vortices that have left the exit of the pump are ignored in the following time steps. New vortices are released at every

second time increment, i.e.

Dtrelease ¼ 2Dt; ð12Þ

as suggested by Sarpkaya and Ihrig (1986).

Following Kiya et al. (1982), the strength of every free vortex is reduced according to

GðtÞ ¼ G0 1� exp
�r2c
4nto

� �	 

; ð13Þ

such as to include viscous dissipation in a simple way. It has been found necessary to do this to damp out the

unphysical, ‘sharp’ velocity fluctuations that otherwise will be generated when the pump is filled with vortices. [The

model is similar to the Lamb–Oseen vortex model, see Sarpkaya, 1988.] to ¼ t � trelease is the age of the vortex, G0 is its
initial strength, and n is the kinematic viscosity of the fluid. rc is a fixed radius which magnitude most authors base on

numerical experimentation, in order to obtain the closest agreement between calculation and experiment (Kiya et al.,

1982; Graham, 1986). In the present work,

rc ¼ gmin=20 ð14Þ

was used, where gmin is the smallest gap between impeller and volute tongue. [A more rigoristic approach to the choice

of rc would clearly be desirable, but it is beyond the scope of the present paper to go further into this problem.]
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Fig. 3. Illustration of the control point enumeration used in Eqs. (15) and (16). The numbering continues on the next blade; the

numbers are here n ¼ 11 through 20, and so on through all blades.
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2.2. Fluctuating surface pressure

When the velocity field has been computed, the unsteady fluid forces acting on the impeller blades can be evaluated

by applying small velocity perturbations to the (unsteady) Bernoulli equation for a rotating system [e.g. Batchelor,

1967, p. 162]. The pressure a small distance E above the control point of element n (see Fig. 3) is

ðpuÞn ¼ p0 þ 1
2
r0ðutÞ

2
0 �

1
2
r0ðut þ DuuÞ

2
n

� 1
2
r0O

2ðr20 � r2nÞu � r0

Z sn

s0

q
qt

ðut þ DuuÞ ds; ð15Þ

where s is a curvilinear coordinate, r0 is the mean density of the fluid, ut is the tangential velocity, Duu is a small

increment thereto, and r is the radius (measured from the impeller axis). The point ‘‘0’’ is a little upstream of the

impeller blade. The expression for the pressure ðplÞn a small distance E below the element takes the same form, just with
index u replaced by index l: Using that ðDuuÞn � ðDulÞn ¼ ðGvÞn=ln (Katz and Plotkin, 2001, p. 73), and neglecting terms

that are quadratic in the small disturbances Duu; Dul ; the pressure difference Dpn ¼ ðplÞn � ðpuÞn can be written as

DpnEr0utnðGbvÞn=ln þ r0
Xn

j¼1

qðGbvÞj
qt

; ð16Þ

where ln is the length of impeller blade panel number n: The first term has the form of the Kutta–Joukowski theorem

L ¼ r0UG for the lift L on a airfoil with circulation G and speed U :
The assumption of thin blades has been applied to obtain (16), such that the Coriolis force term 1

2
r0O

2fðr2nÞl � ðr2nÞug
can be ignored. Neglect of the terms quadratic in the disturbances Duu and Dul is, strictly speaking, permissible only if

the angular speed jrOjbjDuuj; jDul j: Alternatively, Dpn ¼ ðplÞn � ðpuÞn could be evaluated directly by using (15) and the
corresponding equation for ðplÞn; taking the small distance E as the half impeller thickness. But (16) is the appropriate
expression for the pressure difference across blades of vanishingly small thickness, i.e., representation of the blades by

vortex sheets, as used in the present work. It is noted here that velocity computations are ‘expensive’ as they, for any

evaluation point, involve summation over all vortices. Direct computation of Dpn ¼ ðplÞn � ðpuÞn involves twice as many
velocity evaluations as (16). It should also be noticed that in cases of large disturbances, where the sufficiency of the

linearized form of the first term might be doubted, the second, unsteady term will dominate over the first, and no

approximations have been made in this term.

The time derivative of the last term in (16) must be evaluated numerically. As ‘jitter’ in the velocities is unavoidable

by the discrete vortex method, a direct finite difference approach will amplify the noise and yield results of limited value.

A smoother and more useful pressure time series can be obtained by differentiating a least-square fit of a number of

consecutive points on the ‘Gbv curve’, as suggested by Lanczos (1956).
1 The formula for the general case of smoothing

by use of K neighbors on both sides of the point where the derivative is wanted is given by

qGðtÞ
qt

¼
XK

k¼�K

kGðt þ kDtÞ

 !,
2
XK

k¼1

k2Dt

 !
: ð17Þ

As values ahead are needed, the pressure evaluation must lag K time steps after the actual state. If K ¼ 2; for example,
the formula is

qGðt � 2DtÞ
qt

¼ f�2Gðt � 4DtÞ � Gðt � 3DtÞ þ Gðt � DtÞ þ 2GðtÞg=10Dt: ð18Þ

In the present work, K ¼ 8 was used.

2.3. Which noise sources does the flow model include?

Flow-noise sources2 may be classified into (i) monopoles, corresponding to unsteady sources; (ii) dipoles,

corresponding to unsteady surface pressure forces; (iii) quadrupoles, corresponding to turbulent velocity- and pressure-

fluctuations. The monopole is the most efficient noise source; the quadrupole is the least efficient.

Nonuniform and unsteady outflow from the impeller, between two consecutive impeller blades, may act as monopole

sources. And interaction between the shed vortices may emulate turbulent flow, acting as quadrupole sources.
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1A slightly different approach, based on so-called ‘smooth interpolatory subdivision algorithms’ was recently suggested by Qu

(1996). The formulas take the same form as Lanczos’s, but the weighing coefficients are different.
2Please see Part II for a more detailed discussion.
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The acoustic analysis of Part II will, however, only consider noise from dipole sources. The quadrupole sources are

typically much weaker and furthermore very difficult to quantify correctly (Fedorchenko, 2000). The monopole sources

are also typically much weaker in well-designed pumps. This is, admittedly, an important point to verify for the present

model, but it will be postponed to a future study.

The present flow model includes dipole-type sources, related to pressure fluctuations on the surfaces, due to the

interaction between the rotating impeller blades and (i) the volute tongue, (ii) the ‘background flow’, and (iii) the shed

vortices; and (iv) interaction between the shed vortices and the volute tongue. All these effects contribute to the pressure

pulsations. An example in Section 4.2 will illustrate the influence of the shedding of vortices on the pressure pulsations

on the impeller blades. But it is difficult to assess the relative importance of the contributions (i)–(iv) on the noise

generation, as leaving out the vortex shedding, for example, will result in an erroneous, ‘unphysical’ flow.

3. Verification of individual routines in the numerical method

As the flow in a centrifugal pump is very complex some relatively simple test problems with analytical solutions were

considered, to validate the individual parts of the numerical method. The source panels modelling the casing were

checked by reproducing the potential flow past a cylinder. The lumped vortex panels representing the casing were

checked by considering a flat plate suddenly set into motion. The reason for choosing this problem is that it effectively

validates the instationary pressure term in (16), and yet, it is a simple problem to program. Fig. 4(a) shows the thin flat

plate with a chord length of 2a; inclined a ¼ 5� with respect to the x-axis, after impulsive start-up to a constant speed U

of rectilinear motion along the x-axis. The figure also shows the vortex roll-up. Fig. 4(b) shows the growth of circulation

and lift. These quantities have been scaled with the asymptotic values (for t-N) which are GN ¼ 2apU sin a and
LN ¼ 2ar0UGN; respectively. It will be seen that there is very good agreement between the analytical results given by
Katz and Plotkin (2001, p. 383) and the discrete vortex results.

4. Simulation of the flow in a centrifugal pump

4.1. Description of geometry

Computations are performed for the ‘2-D’ laboratory pump of Chu et al. (1995). The pump speed is 890 r:p:m: The
impeller is 253 mm in outer diameter and 84 mm in inner diameter. It has seven blades, all with an exit angle of 15� and

formed as logarithmic spirals. The blades are made of thin plate of uniform thickness. The volute has the shape of a

simple Archimedes spiral, with radius

rvðyÞ ¼ RT þ gmin þ gvðp� yÞ=2p; �ppyp
59

60
p: ð19Þ

Here RT ¼ 126:4 mm is the outer radius of the impeller, gmin ¼ 9 mm is the minimum volute gap, and gv ¼ 102 mm is

the ‘main’ volute gap. Often the lip clearance is specified in per cent of the impeller radius. In this example, 100%
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(a) (b)

Fig. 4. (a) Roll-up of the vortex wake from a flat plate, inclined 5� to the axis of motion, which was started up impulsive from rest to

the speed U ; (b) Lift and circulation. Comparison between computational results and analytical results from Katz and Plotkin (2001).
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gmin=RTE7%: A straight exit channel of height 4 m is connected to the pump at the volute end-points y ¼ �p and
y ¼ 59

60
p: The strength of the inlet source is 0:675 m2s�1 (flow rate per unit depth). For a volute of constant thickness

25 mm; this gives a flux of 1:022 m3=min which is 35% above the design flow rate, as also used in the tests of Chu et al.

(1995). The working fluid is pure water with mean density r0 ¼ 1000 kgm�3 and speed of sound c0 ¼ 1400 m s�1: If the
kinematic viscosity n ¼ 1:004
 10�6 m2s�1 (pure water at 20�C), the Reynolds number is Re ¼ 2RT UT=n ¼
2OR2

T=nE3
 10
6 (Brennen, 1994). The largest rotational Mach number is Mr ¼ UT=c0 ¼ ORT=c0E0:0084:

The technical data for the pump are summarized in Table 1. The computational parameters are given in Table 2.

4.2. Simulation results and discussion

Fig. 5 shows the distribution of the vortices shed from the tongue and the trailing edges of the impeller blades after

impulsive start-up from rest to 890 r:p:m: of the seven-bladed centrifugal pump. The impeller rotates in clockwise
direction and is moved 2� forward by each time-step. Black asterisks indicate anti-clockwise rotating vortices, while

open dots indicate clockwise rotating ones. Vortex roll-up may be noticed in Figs. 5(a) and (b). This roll-up is in

correspondence with the counter-clockwise rotation of fluid within each blade passage, which sometimes is called the

displacement flow (Brennen, 1994).

Fig. 6(a) shows the distribution of vortices after 200 time-steps (corresponding to an impeller increment of 400�) from

impulsive start-up from rest. Part (b) shows the corresponding velocity vectors, part (c) the iso-velocity levels, and part

(d) the iso-vorticity levels. The recirculation seen on the outside of the volute tongue (especially clear from parts (b) and

(c)) is here mainly due to the shedding of vortices from the volute tongue, but is amplified when the flow rate is above

the design flow rate (Brennen, 1994). These plots appear to be consistent with Figs. 2 and 3 in Chu et al. (1995). The

vorticity xz in Fig. 6(d) was calculated by approximating xz ¼ qu2=qx1 � qu1=qx2 by the finite difference expression
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Table 2

Computational parameters

Parameter Symbol Specification

Number of panels on each impeller blade Nbv 40

Number of panels on the pump casing — 40

Number of panels on the exit pipe — 80

Inlet source strength Gps 0:675 m2 s�1

Vortex cut-off radius e 0:005 m

Table 1

Data for the simulated centrifugal pump

Parameter Symbol Specification

Impeller inner radius rT 42:1 mm
Impeller outer radius RT 126:4 mm
Number of blades Nblades 7

Blade exit angle — 15�

Blade shape — Logarithmic spiral

Pump vane perimeter rv ½RT þ 9þ 102ðp� yÞ=2p� mm; ð�ppyp59
60
pÞ

Length of exit pipe — 4 m

Flow rate — 1:35
 design flow rate ¼ 1:022 m3=min
Design flow rate — 0:757 m3=min
Angular velocity O 93:2 rad s�1 ð890 r:p:m:Þ
Peripheral impeller velocity UT 11:78 m s�1

Fluid density r0 1000 kgm�3

Fluid kinematic viscosity n 1:004
 10�6 m2 s�1

Speed of sound c0 1400 m s�1
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xz ¼ Du2=Dx1 � Du1=Dx2: If the cut-off function Cj � 1 in (3) the vorticity field will just be given by

xz ¼
ðGvÞj for ðx1; x2Þ ¼ ðy1j ; y2jÞ;

0 for ðx1; x2Þaðy1j ; y2jÞ;

(
ð20Þ

where again, ðx1; x2Þ is the observation point and ðGvÞj is the strength of the vortex placed at ðy1j ; y2jÞ: But with Cj given

by (4) the vorticity will be nonzero away from the discrete vortices (Tryggvason et al., 1991).

Fig. 7(a) shows the variation in strength of the vortices shed from the impeller blades. Here tblade ¼ 2p=ONblades is the

time between the passing by the tongue of two consecutive impeller blades. Pulse-like spikes are thus seen at every seven

time units, where a blade passes by the volute tongue. Fig. 7(b) shows the nondimensional lift and circulation for one

impeller blade, defined by Ltot ¼
P

n Dpn=r0U
2
T and Gtot ¼

P
n ðGn=UT lnÞ; respectively. A periodic pattern is

recognized, but also some random ‘noise’ due to the interaction of vortices. With a nondimensionalization of the

time t by 7tblade; one time unit corresponds to a full rotation of the impeller. Negative circulation corresponds to the

ARTICLE IN PRESS

Fig. 5. Distribution of shed vortices after impulsive start-up of a pump from 0 to 890 r:p:m: Black asterisks indicate anti-clockwise
rotating vortices, open dots indite clockwise rotating ones. The division of the volute into panels is also indicated. The number of time

steps are: (a) 10; (b) 50; (c) 100; (d) 500; and (e) 5000. The impeller is advanced 2� at each time step.
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generation of counter-clockwise rotating eddies between the blades, and to lift in the convex direction. It is noted that

the change of sign of the lift is made possible by the nonstationary (time-derivative) term in (16).

This is perhaps illustrated better by Fig. 8 (full lines) which shows (a) the nondimensional tangential velocity utn=UT

and (b) the pressure difference Dpn=r0U
2
T for the most downstream control point ðn ¼ NbvÞ of an impeller blade.

Guelich and Bolleter (1992) estimate the absolute velocity and the variation in stagnation pressure, caused by the wake

flow, at an impeller outlet to be of magnitudes utE0:5UT and DpE0:375r0U
2
T ; respectively, but mention that values of

Dp=r0U
2
T between 0.4 and 0.5 have been measured. These values are seen to agree reasonably well with the results

presented in Fig. 8. Having the Bernoulli equation in mind, it may seem strange that maximum stagnation pressure
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(a) (b)

(c) (d)

Fig. 6. (a) Distribution of vortices at 200 time-steps after impulsive start-up from rest. The impeller is advanced 2� at each time-step;

(b) Velocity vectors; (c) Iso-velocity levels; (d) Iso-vorticity levels.
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corresponds to maximum tangential velocity. This is because the tangential velocity is given with respect to global

(fixed) coordinates, and not with respect to a coordinate system rotating with the impeller. In such a coordinate system,

maximum stagnation pressure corresponds to minimum tangential velocity. [See also Fig. 2 in Guelich and Bolleter

(1992) and the discussion thereto.] Fig. 8(b) also illustrates the importance of the unsteady term in (16). Without the

unsteady term the pressure fluctuations are small, and the ‘pulse’ generated when the blade passes by the volute tongue

is not captured at all.

The influence of vortex shedding on the tangential (absolute) velocity and the variation in stagnation pressure at the

impeller outlets is also illustrated by Fig. 8 (dashed lines). Kelvin’s theorem (Eq. (9)) is violated in the absence of vortex

shedding, although the velocity boundary conditions are satisfied. The result is a significantly too low exit flow velocity,

an unphysical velocity peak when the wake flow is blocked by the tongue (Fig. 8(a)), and thus also a very different

pressure signature (Fig. 8(b)).

The effects of both spatial and temporal discretizations are illustrated in Figs. 9–12. These figures show, as Fig. 8, the

variations in velocity and stagnation pressure at the most downstream control point of an impeller blade. In any of the

figures, only one parameter is changed at a time. Fig. 9 shows the effect of dipole density on the impeller blades. [It

should be noticed here that when the number of dipoles are changed the locations of the control points are also changed

slightly.] Fig. 10 shows the effect of changing the time step, in terms of the impeller degrees of advancement per time

step. Fig. 11 shows the effect of panel density on the volute, and Fig. 12 the effect of panel density on the exit pipe.

Although differences are seen, it is difficult to trace any general trend in any case. It may then be concluded that results

based on the computational parameters of Table 2 are sufficiently insensitive to discretization changes.
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(a)

(b)

Fig. 7. (a) Variation in the strength of the vortices that are shed from the trailing edges of the impeller blades; (b) Variation in total lift

and total circulation of a single impeller blade.
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Following the pattern of Figs. 8–12, Fig. 13 illustrates the effect of changing the pump speed, while keeping the flow

rate constant (in terms of constant inlet source strength). Reducing the speed from 890 to 800 r:p:m: does, as might be
expected, not significantly influence the velocity and stagnation pressure. Reduction to 600 r:p:m: results in lower
maximum velocity, and smoother velocity variations. This implies in turn a smoother variation in stagnation pressure.

The pulse-like spikes on both velocity and pressure curves for 600 r:p:m: are caused by ‘squeezing’ of a vortex when an
impeller blade passes by the volute tongue.

Fig. 14 illustrates the effect of changing the flow rate, in terms of the changing the inlet source strength. The speed is

kept constant equal to 890 r:p:m:: Reducing the source strength results in more ‘noise’ in the velocity and pressure. This
is because the shed vortices are then not so well ‘shed clear’ from each other, and noisy interactions occur. [The lowest

flow rate, 0:5 m2 s�1; is, in fact, the design flow rate.] In spite of the increased noise, there is a tendency of more abrupt
velocity and pressure changes, indicating larger pressure pulsations by decreased flow rate.
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Fig. 8. Effect of vortex shedding from the impeller blades. (a) Variation in tangential velocity utn=UT at the most downstream control

point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.
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Returning, lastly, to the velocity and pressure fluctuations shown in Fig. 8, Fig. 15 shows the frequency spectra of

these signals. It is seen that both fluctuate with the rotational frequency frot ¼ O=2p ¼ 14:8 Hz and its higher

harmonics. [It is noted that the second harmonic is the dominating frequency in the pressure signal.] This indicates that

the responding pressure fluctuations in the volute will be dominated by the blade passage frequency fblade ¼ frotNblades ¼
103:8 Hz and its higher harmonics, corresponding to the integrated effect of all Nblades impeller blades.

5. Conclusion

This paper has presented a discrete vortex method for simulation of the flow within a centrifugal pump. It is believed

to be one of the simplest methods capable of capturing the essential features of this kind of rotational flow. The aim of
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Fig. 9. Effect of dipole density on the impeller blades. (a) Variation in tangential velocity utn=UT at the most downstream control point

of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.
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the method is, in the present context, to provide a good estimate of the unsteady impeller blade surface forces as input

to an acoustic model, which is the subject of Part II of the paper.

The method is inherently 2-D. It is thus sufficient for analyzing the laboratory pump flow to

which it has been applied, as experiments have shown that the flow indeed is essentially 2-D. 3-D effects

can hardly be neglected in most commercial pumps, and the usefulness of the discrete vortex method to

such complicated problems is uncertain, as 3-D vortex methods still are on an early stage of development (Satofuka,

2000).

The main conclusions from the examples presented are as follows.

(i) It is essential to take the shedding of wake vorticity into account in order to obtain realistic wake flow

velocities.
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Fig. 10. Effect of the size of the time steps, in terms of number of degrees of impeller advancement per time step. (a) Variation in

tangential velocity utn=UT at the most downstream control point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at

the same location.
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(ii) The velocity and pressure fluctuations on the impeller blades are dominated by the rotational frequency frot ¼
O=2p and its higher harmonics.

(iii) Lanczos’s (1956) method to determine the derivative of a time series has been found very useful.
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Fig. 11. Effect of panel density on the volute. [There are 80 panels on the exit channel in any case.] (a) Variation in tangential velocity

utn=UT at the most downstream control point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.
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Appendix A. Influence coefficients for the source panels

The influence coefficient vector sj ¼ ðs1j ; s2jÞ will be given in terms of local coordinates for the jth panel, ðy1; y2Þj ;
where the control point is at ð0; 0Þ and the left and right corner at ð�s; 0Þ and ðs; 0Þ; respectively. In
these coordinates,

*sj ¼ ð*s1j ; *s2jÞ ¼
Z s

�s

y1 � x; y2
ðy1 � xÞ2 þ y22

 !
j

dx

¼
1

2
ln

ðy1 þ sÞ2 þ y22

ðy1 � sÞ2 þ y22

" #
; arctan

y1 þ s

y2

� �
� arctan

y1 � s

y2

� � !
j

: ðA:1Þ
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Fig. 12. Effect of panel density on the exit channel. [There are 40 panels on the volute in any case.] (a) Variation in tangential velocity

utn=UT at the most downstream control point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.
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Let tj and nj be the tangential and normal vector, respectively, to panel no. j; given in terms of global coordinates
X ¼ ðX1;X2Þ: The jth influence coefficient vector, given in these coordinates, is then

sj ¼ *s1jtj þ *s2jnj : ðA:2Þ

Let the control point of the jth panel be given by yj in terms of global coordinates. For the case where the point of

observation x ¼ yj ; Eq. (A1) gives that

*s1j ¼ 0; *s2j ¼ p: ðA:3Þ
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Fig. 13. Effect of pump speed. [The flow rate, in terms of inlet source strength, is kept constant.] (a) Variation in tangential velocity

utn=UT at the most downstream control point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.
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Fig. 14. Effect of flow rate, in terms of inlet source strength. [The pump speed is kept constant.] (a) Variation in tangential velocity

utn=UT at the most downstream control point of an impeller blade; (b) Variation in pressure difference Dpn=r0U
2
T at the same location.

Fig. 15. (a) Frequency spectrum of the tangential velocity utn=UT shown in Fig. 8(a) [Here *3 denotes the Fourier transform of 3:]; (b)
Frequency spectrum of the tangential velocity pressure difference Dpn=r0U

2
T shown in Fig. 8(b).
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